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Abstract

The least-squares procedure for gradient fitting within an un-
structured flow solver requires the selection of a cloud of lo-
cal points, referred to as a stencil. In this paper, we present
the choice of least-squares stencil for both the flow field recon-
struction for convective fluxes and viscous derivative compu-
tations in our flow solver, Eilmer. The importance of block
boundary stencil choice is discussed with regards to retaining
second-order accuracy in multi-block simulations. We use the
method of manufactured solutions to verify the implementation
and choice of stencils by showing that the solver achieves the
expected second-order accuracy for both the Euler and Navier-
Stokes equations on single-block and multi-block grids.

Introduction

One planned application of our flow solver, Eilmer [3], is CFD-
based optimised design of hypersonic vehicles. It is envisioned
that the complex geometries expected as a result of the opti-
misation will require an unstructured grid solver. The code,
written in the D programming language [1], is a finite-volume
cell-centred solver for compressible flows. For finite-volume
solvers, such as Eilmer, gradient reconstruction is required
at two stages throughout the flow update procedure. Firstly,
to achieve higher then first-order accuracy, the primitive flow
variables stored at the cell-centres must be reconstructed to a
cell interface via some interpolation function. This reconstruc-
tion procedure requires an estimation of the gradients of the
primitive flow variables at each cell centre. Secondly, for vis-
cous simulations, the spatial gradients (for example the spatial
derivatives of velocities, ∂~u/∂~x) are required at the cell inter-
face mid-points for calculating the diffusive fluxes through cell
interfaces [4].

Two popular methods for approximating the gradients are
Gauss’ divergence theorem and the least-squares procedure.
In a recent critical review of gradient approximation meth-
ods, Syrakos et al [8] determined that the cell-centred weighted
least-squares method was the most robust gradient fitting
method for unstructured grids. In the current paper, we
will present the weighted least-squares procedure implemented
within the unstructured flow solver. The focus of this work is
to present our lessons learnt on selecting stencils which retain
second-order accuracy for multi-block simulations of the Euler
and Navier-Stokes equations. The Method of Manufactured So-
lutions [7] is used to verify the accuracy of the new stencils. In
recent years, we have used manufactured solutions extensively
as a verification technique during the development of the code
[2, 3, 9].

Numerical Method

We begin by presenting the least-squares procedure for a
generic cloud of points before delving into the selection of our
stencils used in the least-squares procedure for gradient estima-
tion of flow quantities.
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Figure 1: Least-squares point cloud stencil.

Consider the cloud of points, j, centred around the ith cell in
Figure 1. For a primitive flow variable qi, the least-squares error
term (S) can be defined as,

S =
N

∑
j=1

w2
j(

~∇qi ·∆~pi j−q j)
2, (1)

where w j is the weight applied to the jth cell. To minimise the
error over the cloud, the error term is differentiated with respect
to the unknown gradients and set to zero,

∂S
∂∇qi

= 0. (2)

The linear system of equations which form (shown for two di-
mensions only) can then be solved to estimate the gradients,

∇qi = [M]−1~b, (3)
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and,
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]
. (5)

If the weights are dependent only on the point positions, the
least-squares estimates for the gradients can be reduced to a
summation of the ∆q values, with coefficients determined from
the equations above. This is the form coded within Eilmer.



Stencil for Flow Field Reconstruction

To achieve second-order accuracy, cell-centred finite-volume
codes need to reconstruct the primitive flow variables up to an
interface mid-point before computing the convective-flux up-
date,

qi+1/2 = qi +φ ·∇qi ·
1
2

∆~pi j, (6)

where φ is some limiting factor which we will assume is unity.

The selection of a stencil for the least-squares gradient fitting
procedure is an open debate, with various methodologies found
in the literature. We have focused on retaining second-order
accuracy for both single block and multi-block topologies. As
a result, we have chosen a compact, nearest neighbour stencil.
This stencil is in fact the same generic stencil used in the least-
squares description, illustrated in Figure 1. Our reconstruction
procedure computes a gradient for all internal cells only. For
multi-block simulations, this gradient is communicated to the
ghost-cells at block connection boundaries such that consistent
inviscid fluxes are computed at shared interfaces of these con-
nections. This increases the complexity of the code as a result
of the tightly coupled communication between neighbouring
blocks. However, failing to do this results in small inconsisten-
cies in flux estimates across boundary interfaces. The compact
nature of the stencil is memory efficient and requires only one
ring of ghost-cells. This also allows reuse of the same stencil
for all cells in the domain.

Stencil for Spatial Derivatives in Viscous Fluxes
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Figure 2: Stencils for point clouds used in the least-squares es-
timates of gradients. � interface where derivatives are being
estimated. × cell interface mid-point data. • cell-centre data.

The viscous flux update for a cell requires computation of the
cell diffusive fluxes. The diffusive flux terms in turn require
an estimation of the spatial derivatives at the cell interface
mid-points. These gradients are approximated using the least-
squares method outlined earlier, but with an inverse-distance
weighting for the points within the cloud. The suite of stencils
used in the viscous gradient calculation are presented in Fig-
ure 2. The stencil denoted as the internal stencil is applied to all
interfaces which are not located on a boundary. The rationale
behind this stencil is once again a compact, nearest neighbour
approach. Not only does this reduce memory requirements,
it retains the physically local nature of the viscous fluxes. In
Eilmer, the internal stencil is not compatible with boundary in-
terfaces because we do not construct nor store ghost-interfaces.

To minimise communication required between blocks, our first
naive approach to handling boundary stencils was to not use
any ghost cell data (stencil denoted as non-symmetric boundary
stencil in Figure 2). It will be shown in a later section that this
resulted in inconsistent gradients at boundary interfaces, and re-
duced the order of accuracy from the expected second-order to
less than first-order.

To retain consistent gradients at shared interfaces on block
connection boundaries and thus achieve second-order accuracy
even for multi-block simulations, we developed the symmetric
boundary and corner stencils presented in Figure 2. The impor-
tant feature of these stencils are the symmetry about the bound-
ary interface. By selecting such a stencil, the gradient along
the boundary interfaces can be evaluated consistently between
the two neighbouring blocks. It is important to note that the
corner cloud must be handled differently in our implementation
since diagonal block neighbours cannot access data from one
another. This allows for the interface to have consistent spatial
derivatives for multi-block simulations at corners.

In the next section, it is shown that the stencils presented retain
second-order accuracy for both single- and multi-block simula-
tions.

Verification using the Method of Manufactured Solutions

The Method of Manufactured Solutions is a code verification
technique that can be used to assess the order of accuracy of a
computational fluid dynamics code. First proposed by Roache
and Steinberg [6], the method allows one to choose a purely
manufactured analytical solution which is fed through the gov-
erning partial differential equations to obtain the source terms
which would in turn generate the manufactured solution. The
solver is then employed to simulate the derived source terms
with exact Dirichlet boundary conditions applied to all bound-
aries by filling the ghost cells with values from the analytical
solution. As grid refinement increases, the solution generated
by the flow solver should approach the analytical solution in all
cells. The manufactured solutions method is a more rigorous
approach than simply using exact solutions because the manu-
factured solution can be constructed to exercise all terms in the
governing equations.

The chosen analytical solution for this paper was first presented
by Roy et al [7]. It is presented below, and the constants used
are presented in Tables 1 and 2. In this paper, we test our im-
plementation of the Euler equations and Navier-Stokes equa-
tions. For the Euler test, an inviscid supersonic flow is simu-
lated on a uniform grid. For the Navier-Stokes test, a subsonic
flow of a viscous gas is simulated on the same uniform grid.
The gas is modelled as a calorically perfect gas with γ = 1.4,
R = 287.0 J/(kg.K), µ = 10.0 Pa.s, and Pr = 1.0.
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In theory, on an infinitely refined mesh the flow solver solu-
tion should approach the analytical solution. In practice, one
calculates an observed order of convergence of the discretisa-



Equation, φ φ0 φx φy φxy aφx aφy aφxy
ρ (kg/m3) 1 0.15 −0.1 0 1 0.5 0
u (m/s) 800 50 −30 0 1.5 0.6 0
v (m/s) 800 −75 40 0 0.5 2/3 0
p (N/m2) 1×105 0.2×105 0.5×105 0 2 1 0

Table 1: Constants for supersonic Euler manufactured solution.

Equation, φ φ0 φx φy φxy aφx aφy aφxy
ρ (kg/m3) 1 0.1 0.15 0.08 0.75 1.0 1.25
u (m/s) 70 4 −12 7 5/3 1.5 0.6
v (m/s) 90 −20 4 −11 1.5 1.0 0.9
p (N/m2) 1×105 −0.3×105 0.2×105 −0.25×105 1.0 1.25 0.75

Table 2: Constants for subsonic Navier-Stokes manufactured solution.

tion error. This is then compared to the actual order of con-
vergence of the numerical model. To determine the observed
order of accuracy, error terms from successive grid refinements
are compared. Obkerkampf and Roy’s textbook [5] presents the
following equation for estimating the order of accuracy,

p =
ln
(

εk+1
εk

)
ln(r)

, (11)

where εk+1 is the error at the coarse level and εk is the error at
the fine level, and,

r =
(

N1

N2

)1/d
. (12)

Here the refinement factor, r, is defined as the ratio of the num-
ber of cells in the fine mesh (N1) and the coarse mesh (N2) raised
to the power of 1/d, where d is the dimension (i.e. 2 for two di-
mensions). Any of the error norms may be used to determine
the order of accuracy. Here we have chosen to use the L∞ norm,
which is defined as the maximum absolute error over the entire
domain for a single cell, and the L2 norm, defined as,

ε =‖ u−ure f ‖2=

(
1
N

N

∑
n=1
| un−ure f ,n |2

)1/2
. (13)

The levels of grid refinement used in this study are presented
in Table 3. We have used the following blocking arrangements:
single block, 4× 2 blocks and 4× 4 blocks. Due to computa-
tional resource limitations on our workstations, only the 8-block
and 16-block cases were simulated on the 5th refinement level.

Grid Dimensions Cell width, ∆x (m)
1 8×8 0.125
2 16×16 0.0625
3 32×32 0.03125
4 64×64 0.015625
5 128×128 7.8125×10−3

Table 3: Levels of grid refinement used for verification.

Method of Manufactured Solutions Results

The results from the Euler test are presented in Figures 3 and 4.
As expected, the L∞ norm is larger than the L2 norm for a given
refinement. Furthermore, both norms achieve the expected
second-order of accuracy for both single block and multi-block
grids. It is also noted that both the L∞ and the L2 norm are
identical for the single-block and multi-block grids. This result
shows that the stencil we have chosen achieves the desirable
trait of “transparency” at block interfaces.
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Figure 3: Norms for the inviscid flow solution.
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Figure 4: Order of accuracy for the inviscid flow solution

The results from the Navier-Stokes test using the symmetric
stencil are presented in Figures 5 and 6. Once again as expected,
the L∞ norm is of a larger magnitude than the L2 norm for a
given refinement, however, both norms achieve the expected
second-order of accuracy for both single block and multi-block
grids. It should be noted that, although it appears as if the sym-
metric stencil achieves block transparency, agreement is only
to the third decimal place for both norms. This result is to be
expected since for a given refinement level, the internal stencil
and symmetric boundary stencil have differing truncation er-
rors. However, despite the difference in truncation error, both
stencils should achieve the same converged order of accuracy.
The results reflect this.

To contrast the behaviour of the new stencils with the old, the
results from the Navier-Stokes test using the initial boundary
stencil is presented in Figure 7. It is clear that the inconsis-
tent flux at the shared interfaces along block connections has
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Figure 5: Norms for the viscous flow solution with symmetric
boundary stencil.
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Figure 6: Order of accuracy for the viscous solution with sym-
metric boundary stencil.
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Figure 7: Order of accuracy for the viscous flow solution with
non-symmetric boundary stencil.

reduced the order of accuracy from the desired value of 2. In-
deed this result motivated further investigation and code devel-
opment so that our stencil selection would solve this issue of
inconsistency.

Conclusions

In this paper, we presented the weighted least-squares proce-
dure used for gradient fitting in both the inviscid and viscous
flux updates for our flow solver, Eilmer. Our choice of point
cloud stencil was presented along with our rationale for enforc-
ing consistency at block connection interfaces. We presented
our results for observed order of accuracy based on the method
of manufactured solutions. This verified that with our sten-
cil selection, Eilmer achieves second-order accuracy even for
multi-block simulations of the Euler and Navier-Stokes equa-
tions. The importance of consistent block connection interface
flux handling was shown by providing evidence that using non-
symmetric stencils reduced the order of accuracy to below 1st
order.
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